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ABSTRACT

Closed-form techniques for calculating fiber-matrix (FM) interface stresses, using

repeating square and diamond regular arrays, were presented for a unidirectional composite

under thermo-mechanical loadings. An Airy's stress function micromechanics approach from

the literature, developed for calculating overall composite moduli, was extended in the present

study to compute FM interface stresses for a unidirectional graphite/epoxy (AS4/3501-6)

composite under thermal, longitudinal, transverse, transverse shear and longitudinal shear

loadings. Comparisons with finite dement results indicated excellent agreement of the FM

interface stresses for the square array. Under thermal and longitudinal loading, the square

array had the same FM peak stresses as the diamond array. The square array predicted higher

stress concentrations under transverse normal and longitudinal shear loadings than the diamond

array. Under transverse shear loading, the square array had a higher shear stress concentration

while the diamond array had a higher radial stress concentration. Stress concentration factors

under transverse shear and longitudinal shear loadings were very sensitive to fiber volume

fraction. The present analysis provides a simple way to calculate accurate FM interface

stresses for both the square and diamond array configurations.
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NOMENCLATURE

fiber radius

arbitrary constants in stress function F

arbitrary constants in stress function F; n = 2, 4, 6, ...

length of one side for square array

components of stiffness matrix, i= 1-3, j = 1-3

Young's modulus

Airy's stress function

shear modulus

normalized peak radial stress under transverse loading

normalized peak shear stress under transverse shear loading

normalized peak shear stress under longitudinal shear loading

cylindrical cordinates

cylindrical coordinate system with origin at H in diamond array

cylindrical cordinate system with origin at F in diamond array

components of compliance matrix, i = 1-3, j = 1-3

components of compliance matrix in cylindrical coordinates

initial and final temperatures, respectively

displacements in the x, y, and z directions, respectively

fiber volume fraction

cartesian coordinates

coefficients of thermal expansion in cylindrical coordinates

coefficients of thermal expansion in cartesian coordinates

change in temperature

normal strains in cylindrical coordinates

applied normal strains in the x, y, and z directions, respectively



7r0, 70z, 3trz

7xyo, 3tyro, 3txzo

_-_"

p

Or, a0, trz

_x, _y, _

Tr0, T0z, rrz

_y, _y_, _

shear strains in cylindrical coordinates

applied shear strains in cartesian coordinates

cartesian axes rotated by 45 degrees with respect to the x-y axes

Poisson's ratio

normal stresses in cylindrical coordinates

average normal stresses in the x, y, and z directions, respectively

shear stresses in cylindrical coordinates

average shear stresses in cartesian coordinates

Superscripts and subscripts

f, m refer to the fiber and matrix, respectively

INTRODUCTION

The fractureofpolymer matrixcompositescan involvethreetypesof localfailures:

fiberfracture,matrixcracking,and fiber-matrix(FM) interfacialfracture.While the

propertiesof thefiberand thematrixarcimportantfactors,thestrengthof theFM interfaceis

criticaltothefailureprocessand overallcompositestrength[I].Itisthereforeimportantto

characterizeFM interfacestrength.Accuratecalculationsof FM interfacestressesarerequired

tomeasureFM interfacestrengthand topredictFM interfacecracking.

Micromechanicalmodels forunidirectionalcompositesbasedon bothclosed-formand

numericalapproacheshave been usedextensivelyinthepast.A comprehensivereviewof

earliermicromechanicalmodels isgiveninreference2. The simplestand most commonly

used isthecompositecylindermodel [3],which assumesa fiberembedded ina cylindrical

matrix.Althoughit lendsitselftoa closed-formanalysis,thismodel neglectsfiber

interactionsand,therefore,works wellonly forlow fibervolume fractions.The effectof

neighboringfibershasbeen accountedforby assuminga regular,periodicarrangementof

fibersinthecomposite.FM interfacestresseswere computed by Foyc [4]in 1966,using

squareand hexagonalperiodicarraysand thefiniteclementmethod. During thesame period,



Adams and Doner [5] used a square array and the f'mite difference method to compute FM

interface stresses. More recently, the finite element technique has been used to compute FM

interface stresses [6]. The boundary element technique has also been used in a recent study

[7].

Numeric_ solutions usually involve tedious mesh generation and convergence studies

and also require large amounts of computing time. Thus, closed-form solutions, which can be

programmed on a personal computer, are preferable to numerical ones. In 1974, Kobayashi

and Ishikawa [8-10] developed analytical solutions using an Airy's stress function approach for

square, diamond, and hexagonal arrays to compute overall thermoelastie constants. Boundary

conditions for different loading conditions were satisfied by a point-matching technique.

However, they did not provide techniques for computing FM interface stresses. More

recently, Averill and Carman [11] developed a similar series-type solution using point-

matching along the boundaries for a hexagonal array and computed overall composite

properties and FM stresses for different properties of the interphase region between the fiber

and the matrix.

Within a composite ply, fibers are arranged randomly and may resemble a square array

in some regions, a diamond array in some regions and a hexagonal array in other regions. To

characterize FM interface strength and predict FM interface cracking, it is important to use the

array that leads to the most critical FM interface stresses under a given loading condition. For

a given fiber volume fraction, Foye [4] demonstrated that the stress concentrations at the FM

interface, for both normal and shear loadings, are higher for the square array than for the

hexagonal array. This may be explained by the fact that the fibers are closer to one another in

the square array. Furthermore, for shear loading, the diamond array may have a higher stress

concentration than the square array. Therefore, under combined loading, the most critical FM

interface stresses will either be produced by the square array or the diamond array. Thus, to

characterize the FM interface strength, FM interface stresses c_culated using the square and



diamond arrays will need to be compared to determine which array leads to the more critical

stresses at the FM interface.

The objective of the present study was to apply closed-form micromechanical

techniques to compute accurate FM interface stresses for thermo-mechanical loadings using

square and diamond regular arrays. The Airy's stress function approach used by Kobayashi

and Ishikawa [9] was adopted in the present analysis for the solution of the basic equations.

Procedures for calculating FM interface stresses under thermal, longitudinal, transverse,

trans,erse shear and longitudinal shear loadings were developed in this study. Unit load

solutions are presented for each of these load cases. The FM interface stresses computed using

the closed-form approach were evaluated using finite element results for the square array.

Comparisons were also made between the FM interface stresses calculated using the square and

diamond array solutions. Finally, the effects of fiber volume fraction on FM interface stresses

are presented.

ANALYTICAL METHODS

As mentioned earlier, the analytical methods used here are based on those presented in

References 8-10. However, the emphasis in References 8-10 was on determining overall

elastic constants. The procedures for applying various loadir_,: _ to the models in order to

calculate FM interface stresses were developed in the present study. For this

micromechanics analysis, these Ioadings correspond to ply stresses in a laminated composite.

Since the basic assumptions in the present study are the same as those in References 8-10, only

an outline of the analytical procedures is described here.

Closed-Form Solution

As shown in Fig. 1, the origin of the cylindrical cordinate system used in this study is

lc¢.ated at the center of the fiber and the z-direction is along the fiber axis. The fibers are

assumed to be circular in cross-section (radius = a), homogeneous, and orthotropic with

transverse isotropy in the x-y plane. The matrix is homogeneous and isotropic and the fiber
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and matrix are perfectly bonded. A state of generalized plane strain is assumed (8z =

constan0 for all loading cases except the longitudinal shear loading case. Note that the

diamond array (Fig. 1(b)) is equivalent to the square array (Fig. 1(a)) rotated by 45 degrees.

The analysis uses the repeating unit cell ABCD for the square array, and EGH for the

diamond array as indicated by the shaded areas.

The boundary conditions on side EG of the diamond array can be conveniently

described by considering three coordinate systems. The polar coordinate system rl-01 has its

origin at H with 01 measured with respect to the x-axis. The r2-¢,2 system has its origin at F

with _2 measured with respect to the horizontal x-axis. The angle 02 is measured with respect

to the line FG. Points along the line AC are shared by the diamonds 1 and 2 which are

centered at points H and F, respectively. Thus, a point with coordinates (rl, 01) can also be

described by coordinates (r2, _2) or by (r2, 02). The cartesian coordinate system _ - _"is

rotated by 45 degrees with respect to the x-y coordinate system.

Governing Eouation

The present problem can be separated into two cases; (a) all Ioadings except

longitudinal shear (i.e., thermal, longitudinal, transverse, and transverse shear) and Co)

longitudinal shear loading. Case (a) can be solved by assuming a state of generalized plane

strain which reduces the problem to two dimensions. The Airy's stress function, F, can be

used to solve this two-dimensional elasticity problem. The governing biharmonic equation can

be written as

V4F 0, V 2 02 1 O 1 02= - +--- + (1)
0r 2 rOr r 2 002

When only average normal stresses, _,, _y and o', ( _,_ = O) are applied to the composite,

the x- and y-axes become axes of symmetry and a general solution to Eq. (1) in the form of a

Fourier series can be written as



OD

F ffi F o(r) +.=._,F.(r) eosnO,

where,

F 0(r) = A0 r2 + B 0 + Co r2 log r + D O log r

F_(r) = A.r *+2 + B.r" + C,r ""+2 + D. r"

(2)

where Ao, B0, C0, D Oand An, Bn, C n arid D n (n - 2, 4, 6, ...) are arbitrary constants.

Equation (2) is valid for both the square and diamond arrays only when symmetric loading is

applied. Transverse shear loading for both the square and diamond arrays will need special

consideration as described later. Case Co), with longitudinal shear loading, will need a

different stress function and is described in a later section. The arbitrary coefficients in Eq.

(2) are determined by satisfying stress and displacement boundary conditions for each loading.

The fiber and matrix regions will each have a different set of arbitrary coefficients.

The expressions for the stress components _rr, _0, and fro can be determined from the

stress function F by taking derivatives [8]. The strain components can be expressed in terms

of the arbitrary coefficients in Eq. (2) by using the constitutive law. It is assumed that the

composite material is transversely isotropic and the constitutive law can be written in

cylindrical coordinates as [8,12]

where,

and

{e} = [S_] {a} + {c_} _T (3)

{e} = {Er, E0, _z, Wr6, _'Oz, Vrz} ,

= °e, °z,  0z,

{or} = {%, (ze, %, 0, 0, 0} coefficients of thermal expansion,

[S,d = compliance matrix (in cylindrical coordinates),

AT ffi T r - T[ ffi temperature change.



The expressionsfor thedisplacementsur and u0 can then be obtained by integrating the

expressions for the normal strains [8,10]. Note that for the thermal loading case, temperature

dependent material properties can be readily incorporated into the analysis by considering an

incremental form for Eq. (3), in which {e}, {tr}, and z_T are replaced by {_}, {tSo}, and b'T,

respectively, and following the incremental procedure outlined in Ref. 10. The effects of

moisture can also be readily incorporated into the analysis by adding to Eq. (3) an extra term

which is similar to the thermal strain term with the cx_fficients of thermal expansion replaced

by the coefficients of moisture absorption.

Internal Boundary Conditions

Using the expressions for the stresses and displacements, the internal boundary

conditions at the fiber-matrix interface for both the square and the diamond array can be

written as,

(4)

where the subscripts f and m correspond to the fiber and matrix, respectively. As explained

in Ref. 8, the coefficients of the inverse powers associated with the fibers, i.e., Cfn and Dfn,

must vanish in order that the stresses and the displacements be finite at r=0. Eq. (4) leads to a

set of linear simultaneous equations by which the coefficients for the matrix region A m, B m,

Cmn , Dmn are expressed in terms of the coefficients for the fiber region Afn, Bfn. Similarly,

the coefficients, Am0 and Dmo, are related to Afo. The coefficients Af0, Afn, and Bfn are

determined by satisfying the external boundary conditions.

The micromechanics problem of an interphase layer between the fiber and the matrix

can also be analyzed using the present analysis technique by satisfying Eq. (4) at the



fiber/interphase and the interphase/matrix interfaces. The additional equations will be used to

determine the unknown coefficients in the interphase region.

External Boundary CondRions

The displacement and stress conditions on the sides AB and BC (see Fig. 1(a)) for the

square array and side EG for the diamond array constitute the external boundary conditions.

For a given set of average strains e_o, e_o, and e_o, the following boundary conditions were

presented in Ref. 9:

For the square array, along lines AB and BC:

0=0-, _r/4 : u]0 =exob, r_yo =0'

0 = _r / 4 --, _" / 2 • v[° = eY°b' Tx'/ O = 0.
(5)

Boundary conditions for the diamond array were determined by considering displacements and

stresses for the diamond shaped region below the line EG (subscript 1) and for the diamond

shaped region above line EG (subscript 2). Along line EG we have:

and,

=u,l + *x04 b,

= -u,l,2 + *xo4 b,

= -u,I;_,, + e_oX/2b.

(6)

01 = 0_ I"/4 "
vl #, -" -vl[__¢, + eyo,V_'b ,

o', 10,= o', ;_0 ,

r_,, =r,__o. "

(7)



The _-_" axes are shown in Fig. 1(b) and are oriented at 45 degrees to the x-y axes. After

substituting appropriately for the stresses and displacements in Eqs. (6) and (7) and using Eq.

(4), the external boundary conditions can be expressed in terms of the coefficients Afo , Afn and

Bfn. A simple point matching technique was used in which these conditions were satisfied at

discrete points on the boundary. The Fourier series in Eq. (2) must, therefore, be truncated so

that the number of terms, i.e., the number of arbitrary constants Afo, Afn and Bfn matches the

number of independent boundary conditions satisfied at discrete points. These boundary

conditions lead to a set of linear simultaneous equations by which Af0, Afn and Bfn are

determined. For the present analysis, the boundary was divided into 5 degree segments. As a

result, 37 terms in the Fourier series, i.e., 37 unknown constants were used for both the

square and diamond arrays. It was shown in Ref. 8 that 37 terms were adequate for

convergence of the results. In the present study, to check the accuracy of the analytical

solutions, FM interface stress results were compared with finite element results for each

loading case. These results will be described later. After the constants Af0, Afn, and Bfn are

determined, the stress state in the unit cell is known for a given set of average strains e_o, eyo,

and e_o. The FM interface stresses can then be calculated from the constants in the fiber region

as

(o'.) i -2Afo + _._{(2+n- n 2)a'Ae +(n-n 2)a°-2Be} cosnO

36

= E n {0 + n)a'A + (n -
n_2, eVCll

1) a'-_Bf,} sin n0

(8)

(_alculation of Average Stresses

The average stresses due to applied strains on the unit cell are calculated simply by

integrating over the appropriate region. For the square array,

10



1 b i b

i b i b

--0 °0

b ABeD b J_co '

(9)

where *,0 is the constant strain in the z-direction and v= is the Poisson's ratio. All

integrations were carried out exactly except for the (at + _r0) term in the last equation, which

was integrated numerically (over the matrix region) using Gauss quadrature. For the diamond

array the same equations can be used if all the b terms in F_,q. (9) are replaced by ._/2b in

the equations for _x and _y and ABCD is replaced by EGH in the equation for _,.

Loading Procedures

The procedures for applying appropriate boundary conditions to achieve the different

symmetric and anti-symmetric loading conditions and preserve the compatibility of the unit cell

with its neighbors were developed in the present study and are presented in the following

section.

_ynunetrie Loading, Cases

Symmetric loads such as thermal, longitudinal, and transverse can be applied by

imposing average strains e_o, eyo, and e,o appropriately. For the thermal loading case, the

FM interface stresses were determined by a two step procedure _irst, overall coefficients of

thermal expansion for the composite were calculated using the macroscopic constitutive

relation for the normal components of stress and strain.

11
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For a given ,aT and e_o = eyo = e_o = 0 imposed on the analysis model the overall otx, for

example, can then be computed using the relation,

ot x = - (StlSx + $125y + S13_=)/AT (11)

where _, _y and a z are the average stresses calculated using Eq. (9). The compliances Sij

in Eqs. (10) and (11) were calculated using only mechanical loading as described later. A

similar procedure can be used to calculate overall ot_ and otz.

Next, FM interface stresses were calculated by imposing the overall strains

e_o = a_AT, ey0 -- OtyAT ande,o - otzAT on the analysis model. The computed average

stresses (6x, at, 6z) for this set of strains will be zero since they simulate unconstrained

thermal loading. Such a procedure ensured compatibility between adjacent unit cells during

thermal loading. Both the square and diamond arrays can be analyzed by this procedure. For

the case of temperature dependent material properties, the same two-step procedure can be

used at each increment of temperature (see Ref. 10).

Longitudinal loading was applied by imposing e_o = 1 and e_o = eyo = -vs_ e_o. The

macroscopic Poisson's ratio, _'31 of the composite is determined by first considering the

macroscopic Hooke's law for normal stresses:

a_ [_C13 C23 Css [e_o

(12)

12



and calculating the constants Cij. For example, C u, C n, and C_3 can be determined by

imposing e_o = 1 and eyo = e_o = 0 on the analysis model. Based on Eq. (12), we have

C_1 = _, C n = _y, and C_3 = _z, where _, _y and_z are theaverage stresses

calculated using Eq. (9). Similarly, the constants Cz2 and Cz_ can be determined by imposing

eyo -- 1 and e_o = e_o = 0 and C33 can be calculated by imposing e_0 = 1 and e_o = eyO = 0.

The Cij matrix in Eq. (12) is then inverted to give the compliance matrix, Sij, for normal

stresses (see Eq. (10)). The unknown _'31 is equal to -$13/$33. A similar procedure is used to

calculate _'2t which is given by -Sn/$22. The FM interface stresses under transverse loading

were calculated by imposing e_o = 1 and eyo = -_'_2e_0, e_0 = -_'_3e_0 • These procedures are

equally applicable to both the square and diamond arrays.

Anti-symmetric Loading Cases

The inplane shear (_) and longitudinal shear (_y_) loading cases involve somewhat

different considerations than the symmetric loading cases. Note that the square and the

diamond arrays are essentially the same except for a 45 degree rotation. This fact can be used

to advantage in the solution of these anti-symmetric loading cases.

Inplane Shear Loading: Using the inplane strain transformation equations for a 45

degree rotation, applied normal strains e_o = -1/2 and eyo = 1/2 (_,_ = e_o = 0) on a square

array model are equivalent to applied shear strains 3'_ = 1 (t_o = e_o = 0 ) on a diamond

array model. Similarly, applied normal strains e_o = 1/2 and eyo = -1/2 (3'_ = e_o = 0) on

a diamond array model are equivalent to applied shear strains 3'_ --" 1 (e_o = eyo = 0) on a

square array model. Thus, FM interface stresses under inplane shear loading for the square

array model were obtained by imposing the appropriate normal strains on the diamond array

model and using the same micromechanic., analysis described earlier. Similarly, inplane shear

loading for the diamond array model was analyzed using normal strains on the square array

model.

Longitudinal Shear Loading: The solution for the square array under longitudinal

shear loading was presented in Ref. 9 for computing overall longitudinal shear stiffness. FM

13



interface stresses for the square array were calculated in the present study by using similar

solution techniques. The solution for the diamond array under longitudinal shear loading could

be obtained by imposing appropriate boundary conditions on the model as presented in Ref.

11. However, in the present study a simple procedure was developed to c_culate FM

interface stresses for this ease. Once again the similarity of the square and the diamond arrays

can be used to advantage in this ease. If the FM interface stresses under longitudinal shear

loading can be obtained for the square array, they can be obtained for the diamond array by

simple transformations.

The governing equation for the square array under longitudinal shear loading can be

written in terms of the longitudinal displacement w as [9]

V2w 0, V 2 02 1 a 1 t92= - --+---+ (13)
Or 2 rOr r 2 002

The solution to this equation is obtained for an average applied shear strain "to (or "t_0)-

From the symmetry and anti-symmetry conditions, a general solution to F-Xl.(13) takes the

form [9]

w -- _:(A'.r" +B'.r*)sinn0,
n _=1, odd

(14)

where A', and B_ are arbitrary constants that are determined by the internal and external

boundary conditions. Internal boundary conditions at the fiber-matrix interface are given by

w, = w., (r,_), = (r_)., (15)

14



where f and m correspond to the fiber and matrix, respectively. Eq. (15) leads to a set of

simultaneous equations by which A_, and Bm are expressed in terms of A'f_. External

boundary conditions on the sides AB and BC of the square array (Fig. l(a)) can be written as

0=0-_ _r/4 • Ow.. _0,
Ox

0 =1"/4 --* 1"/2 : w. =b_'_0.

(16)

These boundary conditions are satisfied at discrete points on the boundary to determine A_.

As shown in Ref. [9], using point matching for points at every 5 degree increment along the

boundary was sufficient to achieve convergence of the numerical results. Once the constants

A_ are determined, FM interface stresses can be computed as,

19

(r), - G_,= ._{n a*-tA'f_} sin n0 (17)

where G f is the longitudinal shear modulus of the fiber and a is the fiber radius. The

average applied stress on the model can be computed, after the arbitrary constants are

determined, as

_y, = _I_CD _'_zdS"
(18)

A similar procedure can be used for an average applied shear strain "Y=o.

The solution for the diamond array under longitudinal shear loading can be obtained

from the solution of the square array by recalling that both arrays are essentially the same

except for a rotation of 45 degrees. Using stress transformation equations for a 45 degree

15



rotation, an average shear stress _r_ applied to the diamond array is equivalent to applying

equal longitudinal shear stresses 7'= and 9_ to the square array, and the two cases are related

by:

1 ] (r'r, + r'_)"rr, = (cos 450 +sin450 )
(19)

Thus, FM interface stresses for the square array under equal longitudinal shear loadings

_',_ and _ can be superposed according to Eq. (19) to obtain the FM stresses for the

diamond array under longitudinal shear loading _y_ .

The FM interface stress results for all the symmetric and anti-symmetric loadings for

the square array were compared with finite element results to check the accuracy of the

analytical solutions.

Finite Element Analysis

The finite dement mesh used in the present study is shown in Fig. 2. It consisted of

one layer of isoparametric hexahedral elements. Three dimensional elements were used to

facilitate the imposition of generalized plane strain. There were 526 nodes and 238 elements

in the model and the analysis was performed using the MSC/NASTRAN code [13]. The

dimensions of the fiber radius, a, and the unit cell side, b, were chosen to represent a fiber

volume fraction of 0.625. A generalized plane strain condition (for the symmetric loading

cases) was imposed by constraining the z-displacement, w, to be zero on the back face and

imposing w=constant (using multi-point constraints [13]) on the front face. For the transverse

shear case, the out-of-plane displacements, w, were constrained to be zero throughout the

model. For the longitudinal shear loading case, the inplane u- and v-displacements were

constrained to be zero throughout the model. The different loading conditions and the

corresponding displacement boundary conditions are listed in Table 1. A convergence study

P
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was performed to decide upon the mesh refinement, especially in the region near the FM

interface.

RESULTS AND DISCUSSION

FM interface stresses were computed using the analytical and f'mite element models for

thermal, longitudinal, transverse, inplane shear, and longitudinal shear loadings. All the results

were obtained for a graphite/epoxy, AS4/3501-6, unidirectional composite. The constituent

material properties used in the present study [14] are given in Table 2.

Fig. 3 shows the normalized FM interface stresses under unit thermal loading

(AT = -1). The analytical results for the square and the diamond arrays are shown by solid

and dashed lines, respectively. The finite dement results for the square array axe shown by

solid circular symbols. There is excellent agreement between the closed-form and finite

element results. Both the peak radial, o r, and the peak transverse shear, _'r0, stresses for the

square and diamond arrays were the same except for a shift of 45 degrees. To characterize

FM interface strength and predict interface failures, these thermal residual stresses will need to

be superimposed with FM interface stresses from the mechanical loading cases. The variations

in the interface stresses are due to the presence of the neighboring fibers. The effects of

uneven fiber spacing on thermal residual stresses in a unidirectional metal matrix composite

were studied in Ref. 15, which showed that the effect of closely spaced fibers on FM interface

stresses can be analyzed by considering a regular array with a larger fiber volume fraction.

Figure 4 shows FM interface stresses under longitudinal loading (6_). Once again,

there is excellent correlation between the closed-form and finite element results. The stress

concentrations (peak stress/applied stress) at the FM interface for this loading are very small

since there is no load transfer across the interface under longitudinal loading. The interface

stresses are purely a result of Poisson's ratio effects and fiber interactions. As before, the

stresses for the square and diamond arrays were the same except for a shift of 45 degrees.
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Figure 5 shows FM interface stresses under transverse loading (if,). Once again there

is excellent agreement between the closed-form and finite element results. The radial stress

concentration for the square array was about 1.35. This was 30 % higher than the stress

concentration for the diamond array. Thus, in a transversely loaded composite the regions in

which the fibers are arranged in a square array would be more likely sites for FM interface

failures. The regions where the fibers are packed closer together are likely to be even more

critical, as will be shown later.

The FM interface stresses for transverse shear loading (_y) are shown in Fig. 6.

There is excellent agreement between the closed-form and finite element results. The radial

stress concentration of 1.54 for the diamond array was 40% higher than that for the square

array. In contrast, the stress concentration for rr0 of 1.23 for the square array was 25% higher

than that for the diamond array. Depending on the relative FM interface strength under

normal and shear loads, the regions in a composite which resemble a square array or a

diamond array could be candidate sites for FM failures.

Figure 7 shows the FM interface shear stress, rrz, under longitudinal shear loading

(_y_). The results from the closed-form analysis and the finite element analysis were in

excellent agreement. This loading produced the highest stress concentration factor of 1.88 for

the square array. There was a 60 % difference in the peak rrz for the square and the diamond

arrays. Also, the location of this peak was shifted by 45 degrees. In a composite, the regions

that resemble a square array will be most likely to experience FM interface failures under

longitudinal shear loading.

The variation of the peak FM interface stresses with fiber volume fraction can be

readily studied using the analytical solutions. The effect of variations in Vf on the FM

interface stress concentrations can be used as an indicator of the effect of uneven fiber spacing

on FM stress concentrations. For example, the effect of fibers being closer together than the

assumed distance 2b (Fig. 1(a)) could be studied by considering higher Vf values. The stress

concentration factors for the square array, under mechanical loading, are plotted as a function

18



of fiber volume fraction in Fig. 8. The stress concentration factors K,_, K,0, and K,_ denote

the normalized peak trr under transverse loading, normalized peak fro under transverse shear

loading, and normalized peak rrz stress under longitudinal shear loading, respectively. The

K,_ was least affected by Vf. The finite element results for Vf = 0.625 and 0.7 are also

shown as a further validation of the closed-form results, especially for higher fiber volume

fractions. For low fiber volume fractions (Vf < 0.5), there is virtually no effect on the stress

concentration factors. Thus, FM interface stresses calculated using a simple composite

cylinder model would be adequate for Vf < 0.5. However, for Vf > 0.5 the effects of fiber

interactions on the FM interface stresses become more apparent. For example, there was a

22% increase in the K s when Vfwas increased from 0.625 to 0.75. The K,_was the most

sensitive to Vf. It increased by 28% when the Vf was increased from 0.625 to 0.75. These

results for increases in Vf suggest that the effects of fibers being closely spaced are minimal

for transverse loading but they can be high for the shear loading cases and need to be

accounted for when considering these cases.

CONCLUDING REMARKS

Closed-form techniques for calculating fiber-matrix (FM) interface stresses were

presented for a unidirectional composite under thermo-mechanical loadings using repeating

square and diamond regular arrays. An Airy's stress function micromechanies approach from

the literature, developed for calculating overall composite moduli, was extended in the present

study to compute FM interface stresses for a unidirectional graphite/epoxy (AS4/3501-6)

composite under thermal, longitudinal, transverse, transverse shear and longitudinal shear

loadings. Comparisons with finite element results indicated excellent agreement of the FM

interface stresses for the square array.

Under thermal and longitudinal loading, FM peak stresses were the same for the square

and the diamond arrays. The square array led to higher stress concentrations under transverse

normal and longitudinal shear loadings. Under transverse shear loading, the square array had
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a higher shear stress concentration, whereas the diamond array had a higher radial stress

concentration. Stress concentration factors under transverse shear and longitudinal shear

loadings were very sensitive to fiber volume fraction. The present analysis provides a simple

way to calculate accurate FM interface stresses for both the square and diamond array

configurations.

The stress concentrations under various loading cases will be different when thermal

residual stresses are included with the mechanical stresses. Within a composite laminate, there

will usually be a combination of normal and shear loadings in each ply. The present analysis

provides a simple way to calculate accurate elastic FM interface stresses for both the square

and diamond array configurations under combined thermo-mechanical loadings.
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Table 1 -- Displacement boundary conditions applied to finite element model.

Loading Boundary condition at

x=b y--b x=0 y--0

Thermal, AT a u=const, b v=const, b u=0 v=0

Longitudinal, _c u=const, b v=const, b u=0 v=0

Transverse, _, u = e_o b v=const, b u=0 v=0

Transverse shear, _ v = 7_o b/2 u = 7_ b/2 v=0 u=0

Longitudinal shear, _r, u=v=0 w = %,o b u=v=0 w=0

aThermal load was applied by imposing AT = constant at all nodes in the model.
bA constant displacement was achieved by imposing multi-point constraints on

the indicated nodal displacements.

CLongitudinal loading was achieved by imposing w = e_o t on the front face,
where t was the thickness of the model.

Table 2 -- Material properties of the constituents [14].

Material Ez Er Gzr Grr Vzr _'rr

(GPa) (GPa) (GPa) (GPa)

Fiber (AS4) 220 13.8

Matrix (3501-6) 4.3 4.3

34.0 5.5 0.20 0.25

1.6 1.6 0.34 0.34

-0.36 18.0

40.00 40.0
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